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Abstract—Particle Swarm Optimization (PSO) is a promising
evolutionary algorithm, which has been used in a wide range of
applications, due to its simple implementation, fast convergence,
parallel behavior, and versatility in working with continuous and
discrete domains. In this paper, we consider its application to the
load balancing problem, in green smart homes. Specifically, an
adapted version of the Binary PSO has been used to determine
the optimal distribution of energy resources, across different
green energy sources in a green smart home. The case study of
interest considers the usage of solar and wind energy, as green
energy sources for the green smart home. Results demonstrate the
effectiveness of the algorithm, in terms of the optimal outcome
(efficient distribution of energy resources), finding installation
material surplus, and the execution speed of the algorithm.

I. INTRODUCTION

Evolutionary approaches have arisen in the field of evo-
lutionary computation, for a wide variety of optimization
problems and applications. Such methods are characterized
by their ability to handle non-differentiable, non-linear multi-
modal functions, their inherent parallelizability, their ease
of use, and their good convergence properties. A prominent
evolutionary approach used to solve global optimization prob-
lems is the Particle Swarm Optimization (PSO) algorithm [1].
Such algorithm has been employed efficiently in different
applications, such as speaker identification based on audio
and facial characteristics, image segmentation for detecting
objects of interest, and in the areas of wireless network and
power engineering [2], [3], [4]. The usage of this evolutionary
algorithm in different applications is due to the following
exceptionally good characteristics that PSO possesses: non-
complex implementation, fast execution, parallel behavior, and
does not require the optimization problem to be differentiable.

This paper focuses on the application of PSO for load-
balancing in smart homes powered by green energy. The last
years, energy conservation has become of great interest; with
the demand of energy and oil price rising [5]. To meet the
energy demand, by causing the least changes to consumers
economics, many green energy sources like solar energy and
wind energy, have been proposed and studied.

For solving the problem of efficient energy resources dis-
tribution, a Binary PSO (BPSO) can be adapted for this
application [6]. The original BPSO algorithm is used for
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problems that are binary in nature, in which each possible
solution of a combination of different factors, is encoded as a
binary string of 1s and Os; hence, for the particular application
of smart homes, such algorithm can be adapted in order to
determine the optimal distribution of energy resources, as the
factors.

The modified BPSO algorithm is employed to balance the
load distribution in a house, powered by different energy types
(e.g. solar, wind, traditional). The load balancing should be
done in such a way that the electric bill of the house would
be lowered, such a goal is achieved by maximizing the energy
consumed at the green energy source.

To support the presence of simultaneous green energy
sources, the algorithm is enhanced with the following: 1)
multi-objective fitness functions are defined as the addition
of individual fitness functions, and 2) two dynamic popula-
tions are used to keep mutual exclusion of appliances and
their connected sources. Results show, that PSO can have an
effective and fast convergence on the load balancing problem,
independently of the location of the home. Furthermore, the
PSO can help detect surplus of installation materials, such that
the consumer can decide if removing the surplus is in need.

The rest of the paper is organized as follows: section II
provides background information on the PSO. Section III
defines the optimization problem of interest, and how the
BPSO can be adapted to solve such a problem. Later in
section IV, we elaborate on the daily events formulation and
generation, considering the location and time of the house
under study. Section V provides the simulation results and
discussion. Finally section VI closes the paper with some
remarks and future work.

II. BACKGROUND

This section presents some general background on the PSO
algorithm, supporting its use on several applications. Then
some current approaches for smart grids are presented.

A. Farticle Swarm Optimization

The original particle swarm optimization technique (PSO)
was introduced by Kennedy and Eberhart in [1] . Such method
updates each particle belonging to a population .S, defined as
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X; = [ Til T2 TiD ] for dimension D, by adjusting
its velocity v;q in each dimension d, for each new iteration
t+ 1:

Vid = Vig+c1-randy - (pia—Tiqd) +c2-rands - (pgbestia—xiq);

where p;q represents the best local position recorded, for
each dimension, and pgbest4 corresponds to the best global
position obtained by the whole population, in dimension d.
The two positive constants c¢; and cy correspond to the
cognitive and social learning rates, respectively. The new
particle position for the next generation in dimension d, is
thus obtained by adding the adjusted velocity to its current
position:

Tid = Tid + Vid

A random inertia weight w was then added to the velocity
update equation, in order to control the impact on previous
velocities to current velocities:

Vig — w-vigtcr-randy - (pia—iq)+ca-rands-(pgbestia—xid)

In this way, the balance between global exploration and
local exploration is affected. Global exploration helps for
searching new areas in the provided space; while local ex-
ploration fine-tunes the search in the current area. A larger
inertia weight w provides greater global search abilities, while
a smaller inertia weight leads to greater local search abilities.

The pseudo-code for this algorithm, using inertia weights
(Original PSO), is shown in Algorithm 1.

B. PSO Applications

The PSO algorithm has been used successfully in training
Hidden Markov Models, for speech recognition [7]. The PSO
algorithm has also been used to determine the optimal subset
of audio and image features, for speaker identification based
on voice and face recognition, in [3], [8], respectively. Facial
characteristics and human voice, have been combined in a sigle
classifier, for multimodal speaker identication in [2], where
PSO is used to optimize the combined subset of audio and
image features. PSO has also been utilized for other image
applications, such as image segmentation, for the purpose
of extracting meaningful objects from an image [9]. This
evolutionary algorithm has also been successfully employed
in wireless networks, with the purpose of finding the optimal
path that an attacker may use [4]. In the area of power
engineering, PSO has been used for designing optimal power
system stabilizers, which are used to damp out local and inter-
area oscillations [10].

In this paper, we are interested on employing the PSO
for the load balancing in Green Smart Homes problem. We
believe that the PSO can provide an effective solution, to ease
up the demmand of energy consumption [5]. The following
subsection describes existing smart grid approaches.

Algorithm 1 Original PSO

Init population S of N particles X; , in search space dimension D
Init particles velocities V; to 0
Init individual best P; to current population
Init Pgbest «+ minx, {F(X;)}
while Generations Remain less than Gnqe or Value to Reach Not
Met do
for Each X; in S do
Access each dimension of X;
for Eachd =1 to D do
Obtain random inertia weight w;q in the interval (0,1)
Adapt particle velocity and position in dimension d
Vig = w - Vig + c1 - randy - (pia — Tid) + c2 - randz -
(pgbestis — ia)
Check Velocity Limit [Vmin, Vmax]
Tid < Tid + Vid
Check Particle Limit [Xmin, Xmax]
end for
Update best local position vector P;
if f(X;) < f(P;) then
P — X;
end if
Update local best position vector P;
if f(X;) < f(P;) then
i — X
Update best global position vector X gbest
if f(P;) < f(Xgbest) then
Pgbest «— P;
end if
end if
end for
end while

C. Existing Smart Grid Approaches

There are several characteristics that a smart grid in a
Green Smart Home should have: self-healing, high reliability,
energy management, and real-time pricing [11]. This paper
concentrates mainly on the energy management issue. Other
works in literature however, have worked on defining how
smart appliances need to be [12].

Green energy, particulary solar and wind, have been studied
previously [13], [14], [15], as alternatives for reducing energy
costs. To incorporate such sources into traditional homes, con-
cepts from networking have been common options, including
TCP/IP [16] and peer-to-peer networks [17], due to their high
scalibility and low cost solutions. These approaches have been
suggested by the smart grid as a network of computers and
the power infrastucture [18]; furthermore the telephone may
can be integrated to such an architecture to provide control
options for the grid [19].

III. LOAD BALANCING ALGORITHM WITH PSO

This section presents how PSO can solve the load balancing
problem, using a multi-objective approach. First, we define the
optimization problem; following, the modified implementation
of the PSO algorithm, which in combination with the smart
home cognition, can provide promising performance.
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A. The Optimization Problem

It is of great importance to distribute loads properly, such
that one can obtain the highest profit out of the smart home
system. Thus, we define the optimization problem as follows:

Given a set of appliances A = {a, a9, as, ..., a;}, where
each appliance consumes a total of w; watts. Such appliances
may be connected to the traditional power grid, or a green
energy source, but not both simultaneously. The capacity of
each energy source its assumed to be Wj for the green
energies, and oo for the traditional grid. Simiraly, we neglect
the normal usage cost for the green energy source, only the
installation costs are considered. The cost of the traditional
grid is based on the number of kilowatts per hour consumed,
and although the price varies per region, it is common that such
price is relatively high. Hence, our objective is to distribute
the load across the green energy sources evently, such that the
price of using the traditional grid is minimized.

To achieve such minimization, it is sufficient to select the
optimal combination of appliances for each green source, such
that

Fr= Y ai-w; < W, a;e{0,1} (1)

i€|a;|

is maximized. Each green energy source its constrained to
a total power provision of Wy, where W} depends on the
location of the smart home. Given the constrains, previously
defined, the appliances in each source are mutually exclusive,
that is, no appliance may be connected to more than one green
energy source.

Equation 1 resembles the the well-known combinatorial
0/1 Knapsack problem [20], with & = 1. However as k
increases, the the complexity of the problem increases fast
enough, because it transforms into a Multidimensional Knap-
sack problem, with the additional constrain that the capacity
of the knapsacks are not equal. This causes problems, because
the Knapsack solution has to be found for each dimension, and
their solutions are not mutually independent.

The Knapsack problem has a solution of the form

m(i) = maz{w + w;|la — a;, w|a} 2)

Using the concept of dynamic programing, this problem can
be expressed as a matrix on which the equation 2 is evaluated
for 1 < W < Wy. Given that the range of total watts in
practical green energy sources is on the order of kilowatts,
this yields problems because most of the entries on such a
matrix are computed unnecessarily, increasing the complexity
of the problem.

Hence a new solution is needed, for which we have
proposed to use Evolutionary Computation, particulary the
Particle Swarm Optimization. The next subsection covers the
advantages of such an algorithm, and its requirements.

B. Two Dimensional Binary Particle Swarm Optimization

The PSO [1] has been chosen for load balancing optimiza-
tion in green smart homes. In particular, the BPSO variation
can avoid unncessary computations, having fast convergence

rate [6]. BPSO is an extension of the original PSO, on which
the parameters to be optimized are of binary nature, with
non-continuous fitness functions. The BPSO is a generational
evolutionary algorithm (EA) which utilizes simple arithmetic
to minimize a given fitness function. The fitness function
does not need to be differentiable, as for traditional gradient
descent EAs. Each particle in the generation, is represented
by a binary string (b1b2bs...b,), which for our problem, are
the appliances in set A. These particles are updated (rather
than removed), using its individual velocity v, and evaluated
according to the fitness function. After evaluation they are
recorded if they surpass the currently known results. The
constants ¢; and cy (see algorithm 2, line 7) represent the
importance of the individual knowledge (i.e. exploitation) and
the global knowledge (i.e. exploration) respectively. The BPSO
monitors both velocity and position, as opposed to canonicals
EAs, which use only the position of the particles. Lines 8-11
are to prevent sigmoid saturation at line 13.

Hence, the items in set A are selected to be powered by
a green energy source or not (i.e. 1 or O respectively). When
an appliance is selected on a green energy source, it stops
demanding energy from the traditional power grid, and works
using only the green energy source for as long as possible. To
avoid high maintenance costs, our design does not consider
the use of batteries; hence, once the green energy source
can’t supply the demand, the appliance switches back to the
traditional power grid, until the green energy source becomes
available again.

We consider an environment where an appliance may be
connected to at most one green energy source, plus the
traditional grid. Morever, two fundamental modifications have
been made to the original BPSO (see algorithm 2) to adapt it
for this situation:

1) N-Population: To maintain mutual exclusion of ap-
pliances among green energy sources, we consider a
population of possible solutions, for each source. Thus,
when optimizing particles, each population has the same
size; one particle may be selected from each population,
such that each particle is evaluated at a different fitness
function. Furthermore, in the event that an appliance
is selected on more than one particle, it can be easily
detected and corrected, using simple AND/OR (lines
17-22) logic functions, such that the appliance may be
selected on one of the two sources or none (i.e. both are
connected to traditional grid).

2) Additive Fitness Functions: Multiple fitness functions
are considered, one for each green energy source. To
compare solutions the total fitness is calculated as the
summation of all fitness functions, evaluated at their
respective particles. Fitness functions that pass over the
maximum energy supplied, by the source which they
are mapped to, are set to 0. For maximizing with the
original BPSO, which is a minimization algorithm, the
total fitness is multiplied by —1.

Hence, the load balancing in green smart homes has the
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form BN — R, where the dimension N of the binary set
B comes from the number of green energy sources available,
and the selection of different particles are mapped to a real
number in R, using the fitness function approach described
above. Particulary, we consider only solar energy and wind
energy, having a total fitness function F' = —(Fioiar + Fuwind)-
Each fitness Fioyrce 1S defined as

Foource = D ient bi - wi if result < max(source)
0 if result > max(source)

where M is the number of appliances considered.

Algorithm 2 2D-BPSO Algorithm

1: Init population of size P randomly
2: Init particles velocities to 0
3: Init individual best to current population
4: Init global best to minpgrticie{ F(particle) }
5: while Generations Remain AND Value not reached do
6:  for Each Particle P do
7: v — a-v+c-rand; - (individual_best — particle) +
c2 - rands - (global_best — particle)
8: if v > 4 then
8: ve—4
9: end if
10: if v < —4 then
10: v+— —4
11: end if
12: for Each bit do
13: if rand < ———— then
1+e?
13: bit — 1
14: else
14: bit — 0
15: end if
16: end for
17: if P1& P> NOT 0 then
17: Generate random integer indexeZ3
18: if index = 0 then
18: Po— Py A1
19: else if index = 1 then
19: P1 — P1 A\ 1
20: else
20: Pr— P N1
20: Po— Py A1
21: end if
22: end if
23: Evaluate particle
24: if F(particle) < F(individual_best) then
24: individual_best «— particle
25: end if
26: if F(particle) < F(global_best) then
26: global_best «— particle
27: end if
28: end for

29: end while

IV. EXPERIMENTAL SETUP

A grammar has been created to compose different senarios,
based on a series of actions A with a duration D and units
U. An example of such a sequence can be seen in listing
1, for a small period of time (i.e. 1 day). Such a format
is repeated for the 365 days in the year, using a stochastic

process. In general scenarios are composed of tuples of the
form (A, D, U, timestamp) (see equation 3).

A = {WORK,COOK,EAT,READ,
WATCH,SLEEP,TRAVEL,
VACATION}

D ¢ R

U = {DAYS,HRS,MINS} 3)

Listing 1. Fragment of Scenario
WORK 12 HRS 08/26/2010 21:00
COOK 32 MINS 08/26/2010 21:32
EAT 25 MINS 08/26/2010 21:57
READ 107 MINS 08/26/2010 23:44
WATCH 201 MINS 08/27/2010 03:05
SLEEP 5.92 HRS 08/27/2010 09:00

The scenarios also take into consideration the details of
house location and day of year. For example, a day at 9:00am
at summer will be hotter than one at winter; depending
on the location the length of days also varies as the year
progresses. For completeness, we present the equations used
by the simulation to model the energy availability, which have
been extracted from literature [21].

Solar energy depends on the location of the house on the
globe, in latitude lat and longitude [ng coordinates. This
location, combined with the time of the day AST, can help
to determine if an event is taking place at daytime. The
apparent solar time AST, which is the local time LST with
an additional correction due to the location, can be computed
using

3arccos(—tan(lmf)tan(<5))

ST
b = 23.4551'11(%(284 + Naay))
AST = LST+ ET+4(SL— LL)— DST
ET = 9.87sin(2B) — 7.53cos(B) — 1.5sin(B)
360
B = ﬁ(Nday —81)

where ET is the equation of time, )\ is the length of the day in
hours, and delta and B are correction factors that depend on
the number of the day in the year Ng,,. LL and SL denote the
local and standard longitude at the location. When solar panels
are designed, the engineers test and rate them to a maximum
energy value. On average, a good solar panel may have a 15%
of environmental loss. Hence, the amount of energy supplied
by the solar system to the house, at any time, can be known
as

0.85N, P
Esolar = { 0

Similarly, we consider the use of wind energy, which can
complement the solar system at nightime, and be modeled by

Euwina=05-p-A-Cp- V3. g -m

if 12— 5 <AST <12+ 3
otherwise
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TABLE I
EVENTS AND APPLIANCES MAXIMUM CONSUMPTION (WATTS)

Event AC Fridge | Range | TV | Lights
WORK 9200 800 0 0 0
TRAVEL 9200 800 0 0 0
VACATION | 9200 800 0 0 0
COOK 9200 800 12200 0 240
EAT 9200 800 0 0 240
READ 9200 800 0 0 240
WATCH 9200 800 0 125 240
SLEEP 9200 800 0 0 0

where A is the rotor swept area, and p is the air density (i.e.
1.255 %). For good designs, the coefficient of perfomance
Cp can be assumed as 0.35, and the efficiencies for the
generator 74, and bearings 7, can be assumed as 0.5 and 0.95
respectively.

Furthermore, the scenarios also simulate vacation and work
time. WORK is done daily, unless users are in vacation time.
A typical VACATION has a probability in a year of around %
weeks. The probability of continuing on the same state (i.e.
WORK or VACATION) decreases over time.

V. RESULTS AND DISCUSSION

In this section we show the results obtained by using
the 2D-BPSO, presented in section III, for balancing loads
in different types of homes: traditional, green, and smart.
Ten one-year scenarios experiments at Orlando, Florida, and
Mayagiiez, Puerto Rico, were conducted, in Java. Different
random seeds were generated, with the purpose of providing
distinct lifestyle patterns. The virtual smart home simulated
was a house of 1640 square feet. The television, refrigerator,
air conditioner, lighting system were the devices considered
for these experiments. Their corresponding ranges with their
average normal power consumptions listed in table I. During
the events specified by table I, the devices are active. I. A
maximum consumption of OW indicates that the device is
inactive. The fridge and TV were connected to the solar
energy, for the green energy cases. In the case of wind energy,
the lights, AC, and range were connected.

Figure 1 shows how the 2D-BPSO can help to obtain a
faster return of investment, by using it on a green smart home.
The algorithm had two possible effects that caused the smaller
slope for the green smart home line: 1) load was effectively
balanced according to the real-time demand of the home, and
2) a surplus in source panels, and windmills was detected,
such that the installation costs may be lowered. For the case
of green homes, it is possible to detect excess of materials,
but the performance of the 2D-BPSO is almost static (i.e. it
is run only when drastic load changes occurr).

Figure 2 presents how 2D-BPSO affects the kilowatts per
hour rate. The traditional house only depends on the power
grid and achieves the total kilowatts. The 2D-BPSO can help
to reduce the dependence on the power grid amost by a half, in
the case of the green home. Furthermore, with the smart home,
the efficiency of the system can be further improved, by adding

Return of Investment per Project
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Years
Fig. 1. Return of Investment for Projects. The traditional house is at the

peak of cost, followed by the house powered by green energy. A smart home
powered by green energy and managed by the 2D-BPSO is, in a long term
basis, the most economical type of house. This occurrs when load balancing
is optimized, and with some cognition the energy consumption can be adapted
to the current context. Hence, the 2D-BPSO can adapt the load accordingly.
This accomplishes two things: 1) lower installation costs, and 2) lower energy
consumption per appliance.

cognition and adaptiveness with the 2D-BPSO, reducing the
grid dependency by nearly 70%.

Average Annual Consumption

14000 B . Grid m—
- - Solar
- - Wind
12000 - - g
10000 Traditional = Green - Smart A
Z aw : : ]
I~y . .
E) - -
3 . .
C e00 - - 4
i . .
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Fig. 2. Consumption for Different House Types. Load distribution per

energy source per each type of home. For the green home, the 2D-BPSO
cuts the dependency by distributing the load, across the green sources. On
the smart home, the 2D-BPSO can be combined with the cognition, to obtain
higher profit. Thus, conserving energy resources.

The performance of the 2D-BPSO was compputed on the
average global best value. Figures 3 and 4 depict the results
acquired. On average, a maximum number of 130 function
evaluations (i.e. 5 generations) were needed in order to find
the Pareto optimal configuration. Therefore, a faster solution
is produced, for the problem, similar to the Multidimensional
Knapsack. Moreover, the average curve demonstrates room for
improvement, because many particles obtained low fitness.
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Evolution of Solar Energy Usage
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12001~ 1

10001~ 1
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Solar Energy Use (kW)

400[ 1

200r] 1

# Evaluations

Fig. 3. 2D-BPSO Performance (Solar Energy). The average best fitness
is shown. The optimum value for the solar energy was obtained around
50 function evaluations. However, the system dropped the fitness at then
around 130 function evaluations, because a Pareto point existed. In terms
of generations the values were obtained in 2 (best) and 5 (Pareto best)
generations.

Evolution of Wind Energy Usage
T T

]

1600 4

g
;
.

Wind Energy Use (kW)
g ]
T T
. .

# Evaluations

Fig. 4. 2D-BPSO Performance (Wind Energy). The average best fitness
is shown. The optimum value for the wind energy was obtained around 130
function evaluations (5 generations). This in time, is also the Pareto optimum
of the system as seen in the solar energy performance.

VI. CONCLUSION

The 2D-BPSO demostrates how the basic PSO evolutionary
technque is practical for the load-balancing application, for
a green smart home. The original BPSO was successfully
adapted, in order to find an multi-objective optimal configura-
tion for the solar and wind systems. This new adapted BPSO
algorithm resulted to be cheap, and was able to find surplus
of resources.

The optimal configuration of loads and their respective
power sources (i.e. tradition and green energy sources), re-
flected a significant cost reduction on initial payment, and
longterm usage of the system. Thus the green smart home
demonstrated to be a good investion over time, with faster

return of investment. This leaves open research for further
study of how evolutionary computation can provide other
features in green smart homes, such as fault tolerance circuits.
The next step in our research, involves adding fault tolerance
methods to the 2D-BPSO, such that the algorithm can adapt
in the event of a natural disaster. Furthermore, we shall
consider employing the 2D-BPSO other energy management
applications, such as industrial energy distribution.
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